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J .  Phys.: Condens. Matter 3 (1991) 3353-3366. Printed in the UK 

Low-temperature magnetic properties of a 
two-dimensional spin nematic state 

A A Nersesyan, G I Japaridze and I G Kimeridze 
Institute of Physics, Academy of Sciences of the Georgian SSR, Guramishvili 6,380077, 
Tbilisi, Georgian SSR, USSR 

Received 18 April 1990. in final form 21 November 1990 

Abstract. A mean-field theory of the low-temperature magnetic properties of a ZD spin 
nematic (SN) state, which is one of the possible states of the weakly interacting electron 
system with a half-filled band on a square lattice. i s  considered. Such a state can result from 
a spin-triplet anisotropic electron-hole pairing and is characterized by circulating local spin 
currents violating translational symmetry of the underlying lattice in the absence of the 
charge-density wave or spin-density wave structures. 

The existence ofgapless quasiparticle excitations determinesthe peculiaritiesof the low- 
temperature behaviour of the 2D SN state. The 'relativistic' Landau quantization of the low- 
energy states in an external magnetic field results in anomalously strong diamagnetism, 
changing to paramagnetism on decreasing the angle between the field and the plane. 

The orientationaleffect ofthe magnetic field andspin-orbit interactionon the spinvector 
dof the order parameter is studied. Different possibilities for the equilibrium orientation of 
the d-vector are discussed. 

1. Introduction 

Recent studies of a weakly interacting electron system on a square lattice with a simple 
half-filled energy band, based on perturbative analysis (Dzyaloshinskii 1987, Dzya- 
loshmskii and Yakovenko 1988, Schulz 1987) have revealed the competition between 
superconducting, charge-density wave (CDW) and spin-density wave (SDW) instabilities, 
depending on the relation between the bare coupling constants. Later, it was shown 
(Nersesyan and Luther 1988, Schulz 1989a) that when, besides a point-like (Hubbard) 
interaction, finite-range and exchange interactions are also considered, the perfect 
nestingpropertyofthesquare Fermisurface, correspondingto thecaseof anexactly half- 
filledband,canresult in twomorepossibleorderedstates withdivergent susceptibilities. 
Although translational symmetry of both states corresponds to doubling of the unit cell, 
it isnot associatedwiththec~worsow structures. Infact,oneoftheseorderparameters, 
which describes an anisotropic spin-singlet electron-hole pairing and thus preserves 
spin rotational symmetry is characterized by non-zero local charge currents circulating 
around the plaquettes in such a way as to produce antiferromagnetically aligned local 
orbital moments. This is an orbital antiferromagnetic (OAF) state whose anomalous low- 
temperature properties have been recently discussed by 'Nersesyan and Vachnadze 
(1989). Another order parameter corresponds to a triplet anisotropic electron-hole 
pairing and describes a state in which spin-up and spin-down electron currents circulate 
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around the plaquettes in opposite directions to produce non-zero spin currents. Having 
a zero local spin density, this state is only characterized by the global spin quantization 
axis, which breaks spin rotational symmetry and is analogous to the d-vector of the order 
parameter in the superfluid 3He-A. Such a state is called a spin nematic (SN) state 
(Andreev and Grischuk 1984) and will be investigated in this paper within a simple 
mean-field theory. 

It should be pointed out that the possible existence of states with local currents has 
been previously noted by Halperin and Rice (1968) in a two-band model of an excitonic 
insulator. Recently the flux phase was studied (Affleck and Marston 1988, Kotliar 1988) 
in the ZD half-filled large-U Hubbard model. When the Mott limit of the exactly half- 
filled Hubbard model isconsidered (i.e. the case of the Heisenberg model), a local gauge 
symmetry appears as a result of the constraint to one particle at each lattice site. Because 
of this symmetry, the local currents in the flux phase are a gauge artefact and can only 
be observable at finite doping. On the other hand, in a weak-coupling theory, there is 
no constraint imposed on the particle number per site and hence no gauge symmetry. 
So, if under some conditions a SN (or OAF) phase occurs in a weakly interacting electron 
system with a half-filled band, the local spin (or charge) currents are non-zero owing to 
the symmetry properties of the corresponding order parameters and, of course, cannot 
be eliminated by a gauge transformation. 

The notion of a SN state was introduced by Andreev and Grischuk (1984), who 
considered magnetic systems with exchange interactions, in which the magneticordering 
violates spin rotational symmetry but preserves time reversal invariance. The SN phase 
may be realized, for example, in quantum spin-1 systems with competing quadratic and 
biquadratic exchange interactions (Andreev and Grischuk 1984, Papanicolaou 1988). 
A panty-violating twisted SN state has recently been discussed in a profound paper by 
Chandraeral(l990). whereaquantumfluidapproach to frustratedz~exchange magnets 
is developed. Since in such systems the average local spin density vanishes, the order 
parameter can only be introduced as a characterization of transformation properties of 
two-spin correlation functions. It was pointed out (Andreev and Grischuk 1984) that 
exchange SN phases do not differ qualitatively from antiferromagnets with respect to 
macroscopic magnetic properties. 

On the other hand, our weak-coupling 2D model, discussed below, represents a 
fermionic realization of the SN state, in which the order parameter is introduced as the 
amplitude of anomalous electron-hole pairing with a special spin and space structure. 
The peculiar feature of the fermionic SN state is the existence of gapless single-fermion 
excitations associated with zeros of the gap function on the Fermi surface, The appear- 
ance of these zeros is a direct consequence of violation of the point symmetry of 
the underlying lattice in the SN state. At low temperatures, the low-energy fermion 
excitations contribute to power-law temperature dependence of thermodynamic quan- 
tities.They playaminorrole, whenamagneticfieldisparallel to the plane of the system, 
in which case the magnetic properties of the SN state are qualitatively the same as those 
of the SDW state. 

As we shall show. the main distinctive property of the fermionic SN state is revealed 
at finiteinclinationofthe field, when the peculiar Landauquantizationofthe ‘relativistic’ 
fermion spectrum takes place. As in the 2D OAF (Nersesyan and Vachnadze 1989). in 
this case strong diamagnetism, with unusual temperature and magnetic field dependence 
of the magnetic susceptibility, is observed. The ‘relativistic’ Landau quantization also 
leads to an interesting orientationaleffect of the magnetic field andspin-orbit interaction 
on the d-vector. We show that the Zeeman splitting of the zeroth Landau level gives an 
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important contribution to the anisotropy energy, linear in the components of the d- 
vector. Together with a contribution from higher-energy states, this results in different 
possibilities for the equilibrium orientation of the d-vector, which can be continuously 
changed on varying the angle between the magnetic field and the plane of the system. 
We also discuss the role of the spin-orbit interaction and show that its combined effect 
with 'relativistic' Landau quantization is revealed in a contribution to the anisotropy 
energy, linear in both the magnetic field and the spin-orbital coupling constant, resulting 
in a two-axis in-plane anisotropy for the d-vector. 

2. Order parameter and mean-field Hamiltonian 

We consider the electron system on a square lattice with a simple, orbitally non- 
degenerate tight-binding spectrum ~ ( k )  = -2t[cos(k,a) + cos(kya)], formed by the 
electron hopping between the nearest-neighbour sites. Throughout this paper the energy 
band is assumed to be exactly half filled, in which case the Fermi surface is a perfect 
square and has the nesting property: ~ ( k  + Q) = -&(k),  where Q = (n/a, n/u). When 
the interaction between electrons is taken into account, this property can result in 
anomalous electron-hole pairing with the order parameter 

Ae~s(k) = (c,Lcrta,p) (1) 
where (Y and fi  are spin variables. 

As pointed out by Nersesyan and Luther (1988), in the SN state, the point symmetry 
D,ofthesquarelatticeis brokendowninto thesubgroupD,, includingrotationsthrough 
an angle n about the horizontal .x and y axes and vertical z axis. Spin rotational symmetry 
SU(2) is broken down to U(l), while time reversal invariance is preserved. In the 
simplest case of the electron-hole pairing on the neighbouring sites of the lattice, the SN 
order parameter, satisfying the above symmetry conditions, has the form 

A,p(k) = i(d- ~,p)rlo(T)[cos(k,a) - COs(kyQ)] (2) 

where A,(T) is a real temperature-dependent amplitude, U are the Pauli matrices and 
d is a unit vector in the spin space. Factorization of the order parameter (2) suggests the 
limit of weak spin-orbital coupling. In the absence of an external magnetic field and 
spin-orbit interaction, the space of degeneracy for the d-vector is a two-dimensional 
sphere Sz of unit radius?. 

The symmetry properties of the order parameter (2) imply that there is no density 
or spin-density modulation as well as no charge currents in the SN state. The physical 
characterization of this state is the existence of non-zero spin currents on the links of the 
lattice. Choosing d = 2, for spin currents flowing through the links (n,  n 2 a,) and 
(n. n 2 ay) (a, and a, being the basis vectors of the square lattice), one finds that 

~'.4h., - k l A o ( - l ) n r + n ~ ~ x  
(3) .."- y - T tAo(-l)"xtnva,. 

i Note that,ifdischanged by -d,  theorderparameter(2)changesitssign.Thischangecanbecompensated 
by a proper transformation from the space group of the original (disordered) system (e.g. by a x/2 rotation 
k,- k,, ky- - k x j ,  or by changing the sign of the amplitude Ao. However, since all these compensating 
transformations belong to a discrete group, there is no continuous path on S'connecting the pointsdand -d, 
which therefore cannot be identified. Therefore, in contrast with the superfluid 'He-A (see e .g . ,  Volovik 
1984) there are no half-vortices among topologically stable configurations of the vector field d(x). 
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Equations (3) clearly show that spin-up and spin-down currents circulate around each 
plaquette in opposite directions and their distribution over the lattice corresponds to 
doubling of the unit cell. 

The simplest mean-field microscopic Hami!tonian which describes a homogeneous 
ordered SN state has the form 

A A Nersesyun ef ai 

fi = 2 [s(k)cbcru - iA(k)(d* a , ~ ) ~ & c x + ~ . . l  (4) 
k 

where the gap function 

A(k) = h,(T)[cos(k,~~) -cos(k,a)]. (5) 

Here Ao(Ao 4 W ,  where W = 8fisthe bandwidthoftheoriginal tight-bindingspectrum) 
is a real amplitude which is assumed to be non-zero below some characteristic mean- 
field temperature. In what follows, only the low-temperature region T 4  A0 will be 
considered. 

Weshall not analyse the self-consistency equation for A,, which requires the detailed 
knowledge of interactions in the system, as well as taking into account the interference 
between different competing instabilities (Dzyaloshinskii 1987, Dzyaloshinskii and 
Yakovenko 1988. Schulz 1987). Nonetheless, it should be pointed out that the dcv- 
elopment of such anisotropic correlations like the SN and OAF ones is only possible if the 
effective interaction is not point-like (Nersesyan and Luther 1988). This requirement 
can also be understood from the dynamical point of view. In fact, the appearance of 
local currents in the weak-coupling SN (or OAF) phase at exactly half-filling implies that 
doubly occupied configurations enter the picture. On the other hand, the Hubbard on- 
site (although weak) repulsion leads to the tendency towards a SDW ordering. To 
overcome this tendency and to stabilize the currents, one has to take into account finite- 
range interactions. 

This can be demonstrated within a half-filled extended ‘U-V-J’ Hubbard model 
including direct (!/) and exchange (J) interactions on the neighhouring sites (U, V > 0). 
Making a RPA estimation of the mean-field transition temperatures for different insta- 
bilities. we show in the appendix that, in the vicinity of the critical line U = 4V, which 
separates the SDW (U > 4 0  and CDW (U < 413 phases (Zhangand Callaway 1989), the 
SN instability turns out to be dominant if the exchange constant J < 0 (at J > 0 the 
dominant instability is the OAFOne). Under these conditions the ‘U-V-J’model provides 
a justification for the mean-field Hamiltonian (4). 

The spectrum of the Hamiltonian (4) is identical with the spectrum of the mean-field 
OAF Hamiltonian (Nersesyan and Vachnadze 1989): 

E ,  ( k )  = *E,@)  Eo(k)  = [s2(k) + A2(k)]”*, (6) 

Since the original tight-binding band is half filled, the exact electron-hole symmetry 
implies that, in the ground state of the system, the lower band is filled, while the upper 
band isempty. The gap between the bands vanishes at two inequivalent points, k ,  = ( E /  
2a,n//2a)andk2 = (-~/2u,ff/2u);so theSNstate,aswellastheOAFstate,representsa 
ZD Fermi system with a zero-dimensional Fermi surface. In the low-energy region 
(IEl4 IAoI), the spectrum contains two branches of gapless quasiparticle excitations 
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with a 'relativistic' (i.e. linear) dispersion relation. The Hamiltonian of these excitations, 
which represents the continuum limit of the original lattice model (4), has the form 

H = H 1 + H 2  

H I  = d2X VL(x) Ic~lSepPxrx + c ~ ( d *  ~ap) l i y r~ lV"lp (x )  
(7) 

Hz = d2X ~ L ( x ) [ c ~ ~ ~ m p B y r x  +  CL(^. Ocp)PxryIW~p(x) f 
where, for a given spin projection, Vlw and Y2= are two-component spinor fields 
describing electron states near k, and R2, respectively, ri are the Pauli matrices in the 
spinor space, and group velocities 

cll = 2 a t a  cI = f i A o a .  (8) 
In obtaining equations (7) a n/4 rotation of the coordinate system in real space was 
done. 

Since the quasiparticle density of states is a linear function of the energy, i.e. 
P ( E )  - I E ~ ,  the electron compressibility and specific heat show power-law asymptotic 
behaviour as T+ 0, K - T/WA,, C - T2/WAo,  which are essentially the same as in the 
OAF state. These power laws distinguish the SN and OAF states from the CDW and SDW 
states; in the latter states the absence of zeros in the corresponding gap functions leads 
to an exponentially fast decrease in thermodynamic quantities with the temperature. 
The most interesting low-temperature magnetic properties of the SN state will be con- 
sidered in the rest of this paper. 

3. Magnetic properties in a parallel magnetic field 

In this section we consider the case of a magnetic field parallel to the plane of the 
system to calculate the spin susceptibility tensor and thus to determine the equilibrium 
orientation of the d-vector in such a field. The parallel magnetic field has no influence 
on the orbital motion of the particles; so only the term describing the Zeeman splitting 
of the single-particle states, namely 

HZ = h . u,pc&ckp (9) 
k 

should be added to the Hamiltonian (4). Here h = p$i  (Ihl Q Ao) ,  pB being the Bohr 
magneton. 

At h # 0 ,  the spectrum is modified as follows: 

E2(k)  = h2 + e2(k)  + A2(k)  2 2[hZ&'(k) + ( d .  h ) z A 2 ( k ) ] 1 ~ .  (10) 
When dand h are parallel, the Zeeman splitting of the zero-field spectrum (6) takes 

place: 

E, , , (k ,  U) = E + ( k )  + oh (U = *l) (11) 
resulting in the appearance of a finite Fermi surface and a finite density of states at the 
Fermileve1,proportional to themagneticfield.Therefore,at T = 0 ,  thelongitudinalspin 
susceptibilityXl1- I hi, tendingtozerowiththe field. Atfinitetemperatures(T< Ao), the 
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zero-field susceptibility is a linear function of the temperature, i.e. X I  - T ,  as opposed 
to the SDW state, where XI is exponentially small. 

A A Nersesyan er a1 

When d is perpendicular to h,  equation (10) yields 

Et,,(k; h) = * { [ ~ ( k )  + oh]’ + A*(k)}’/z. (12) 
Here the magnetic field plays the role of a chemical potential which determines two new 
Fermi surfaces of the original (disordered) system, ~ ( k )  = +h. In this case the Fermi 
surface in the ordered SN state still remains zero dimensional, but the number of zeros 
now equals four, since the magnetic field splits each of the two zeros of the original 
spectrum (6). Therefore, in the low-energy region (IEI 6 A,,), where the picture of 
gapless ‘relativistic’ excitations is valid, the magnetic field can be eliminated by a gauge 
transformation. So the transverse susceptibility xl  will mainly be contributed by the 
region of higher energies (Ao W), and hence will be comparable with the 
paramagnetic susceptibility of the normal metallicstate with a half-filled band. A simple 
calculation shows that, at T <  A,,, within the logarithmic accuracy, the zero-field 
transverse susceptibility equals 

I El 

TE&) cosh2[Eo(k)/2T] l l  
xI = [-tanh(y) EOW C -- 1 E2(k) 

k E$(k)  

where the logarithmic factor is due to the Van Hove singularity of the density of states 
at the Fermi surface of the metallic phase. The change in the free energy in the magnetic 
field is 

A F ( H ) = F ( H ) - F ( O ) =  -4xXlh2 -1kli - ~ ~ ) ( d . h ) ’ .  (14) 
From (14) it follows that, since xI *.xi,, in the magnetic field parallel to the plane of 

the system, the d-vector must be oriented in the plane perpendicular to the field. There 
is a degeneracy with respect to two-dimensional rotations of the d-vector in this plane; 
so the space of degeneracy is reduced to a circle S ‘ .  

4. Magnetic properties in an arbitrarily oriented magnetic &Id and anisotropy energy 

In this section we shall consider the case when the magnetic field makes a finite angle 
a(0 < a < n/2) withtheplaneofthesystem, affectingtheorbitalmotionoftheparticles, 
andcalculate the magnetic field dependence of the ground-state energy. Now, to describe 
the low-temperature properties of the SN state, one must know the exactly quantized 
spectrum of low-energy excitations, since at T = 0 the wavelength of these excitations 
diverges on approaching the Fermi points k ,  and k2. As in the OAF phase (Nersesyan and 
Vachnadze 1989), a ‘relativistic’ quantization of the Landau levels in the presence of a 
finite magnetic flux through the plane (Jackiw 1984, Balatsky er a1 1986) 

Ef = .vp5Ji (n = 0,1,2, .  , .) (15) 

S 2 ,  = 2eH,clicl/c (16) 

where 

( H ,  = H sin (Y being a component of the field, perpendicular to the plane) results 
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in anomalously strong diamagnetism, with unusual magnetic field and temperature 
dependence of the diamagnetic susceptibility. 

Certainly, theapplicabilityof(15)isrestricted bythecondition)R,)’/’4 A,,, which, 
due to its order of magnitude, reduces to (h/Ao)l’Z G 1. Therefore, if the angle CY is not 
too small, the following condition is satisfied 

h/l Q, I - ( h / ~ ~ ) l f i  (sin CY)-’’* a 1 (17) 

implying that the spacing between the n = 0 and n = 1 Landau levels considerably 
exceeds the Zeeman splitting. Then only splitting of the n = 0 Landau level, located at 
the Fermi energy, should be taken into account. As we shall see, this results in an 
important contribution to the anisotropy energy at T =  0, linear in components of the 
d-vector. 

Let us first consider the contribution of the low-energy region [El G A0 to the ground 
state energy. In the ahsenceof spin-orbit interaction, real and spinspacesarecompletely 
decoupled. It is then convenient to direct thed-vector along the spinz-axis and to choose 
h in thexz-plane of the spin space, 6 = (hx, 0, h J .  Makinga n/4 rotationof the real space, 
choosing a Landau gauge for the vector-potential, A = (0, H,x), and transforming 

yr2(x)4 V d x )  exp(ieH,xy/c) 
to obtain the effective gaugeA = (-H,y, 0) for the second group of fermions, we get 

HI =/dZxVT(x)%(x)Vl(x) HZ = I d ’ x  ~ ~ ~ : ( x ) % ( Y ) W Z ( X )  (18) 

where the one-dimensional, formally relativistic Hamiltonians %I and %2 have the form 

%,(x) = c ~ l p ~ z ~  - (eH,cLi/c)o,ry - h,o, - h,o, 

%AY) = C I @ ~ ~ ~  + (eH,c,)ilc)o,zy - h,u, .- h,o, 

(19) 

(20) 
wherei = x - cky/eH,,j = y + ck,/eH,, k,and k, being the conservedcomponentsof 
the momentum for the two gauges, respectively. 

Note that the Hamiltonian remains invariant under the transformations 

X + Y  y +  -x YI+ ‘ X V Z  W 2 - ) ~ y W 1  XI *E2 (21) 

and so it is sufficient to consider only the Hamiltonian %el. 
Using a gauge transformation Vl(x,y) + U-’(x)V~(x,y) with 

U(x) = ex~[-i(~~x/cll)o,.J 

X1(X)’ U(x)X1(x)U-’(x) = X y y x )  + q y x )  

yields 

where 

XP) = cllp,z, - (eH,c . i /c )o , r ,  - h,o, 

Xy) = h,{o,[l - cos(2h,x/c)] + uyrx sin(2h,x/c~)}. 

The spectrum of the Hamiltonian (23) consists of the Landau levels 
E” = E *  - h  

“,O ” P J Z  

split by the component h, of the magnetic field, parallel to the d-vector. Note that 
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%?!I) = 0 at both h, = 0 and h, = 0. Considering a general case of hx, h, # 0 and treating 
%ell) as a perturbation, it can be readily seen that, in the lowest order, diagonal matrix 
elements (n, al%e\') In, U )  are proportional to h,(h;/jQ,l) and, therefore, represent 
small correctionsdue to condition (17). With this accuracy, adopting results of Nersesyan 
and Vachnadze (1989) for the contribution of the low-energy states to the magnetic field 
dependence of the ground-state energy (the presence of the Pauli matrix U, in the second 
term in (23) is not essential owing to the eH c) -eH symmetry) and, taking into account 
both groups of fermions, we obtain 

AWY) = I(H) - %(O) = [5(%)/3]v(Hl ( Q 1 1 1 ' 2  - 2v(HL)lh,1[1 + O(h:/lQ, I)]. 

A A Nersesyun et a1 

(25) 

Here v ( H , )  = S l e H ,  1 / b c  is the degree of degeneracy of each Landau level (15) 
(S = Nuz being the area of the system), and c ( x )  is Riemann's zeta function. 

The first term in (25) describes anomalously strong diamagnetism of the SN state, 
with the zero-temperature susceptibility 

xdi. - -N[35(1)/4n*](Aa/W)(e/m'~)~/2IHI-'~ sin3/' 01 (26) 

continuously increasing (by the absolute value) with decreasing field?. This increase 
saturates at temperatures T -  IQ,l'fi, when ,ydta becomes of the order -(ez/m*c2) 

The second term represents a very important paramagnetic effect caused by non- 
compensated spins of the n = 0 Landau level (Semenoff 1983). Note that it is only 
contributed by the component of the field, parallel to the d-vector. 

In the higher-energy region (A, Q ]El  4 W), the orbital motion of the particles is 
quasiclassical and, hence,playsaminorrole. Therefore, toobtain the anisotropyenergy, 
it is sufficient to add (14) to the second term of (25): 

(A,/V. 

I,.,, = (2N&/zW)[(2/n) ln(W/A,) (d.H)' - (m/m*)le, -HI Id.HI] (27) 

where m is bare electron mass. m* = ( l /W)az is the effective electron mass with the 
original tight-binding spectrum, and e, is a unit vector in the real space, perpendicular 
to the plane of the system. The presence of the invariant in (27), linear in d. is in 
agreement with the general analysis of the anisotropy energy in SN states given by 
Andreev and Grischuk (1984). 

As follows from (27), the equilibrium orientation of the d-vector depends on the 
inclination of the magnetic field and the magnitude of the parameter 

C = a(m/m*) / [3  In(W/A,)]. (28) 

Minimizing (27) with cespect to the angle p between d and H leads to the following 
results for the equilibrium orientation of the d-vector. 

(i) If C > 1, there exists a finite range of the inclination angle cuof the magnetic field 
given by 0 1 ~  < 01 < a/2, with sin eo = 1/C, when p = Oor p = n, i.e. disoriented along 
the magnetic field: d =  *H/IHI.  In this case, the space of degeneracy for d is Z,. 
t As shown by Nersesyan and Vachnadze (19891, in a quasi-20 (layered) system, the square.root increase in 
Xd,. takes place above some characteristic field H o  - (m*c/e)(ro/b)Ao (ro is the classical radius of the band 
electron and b is the interlayer spacing), below which a crossover to a SD regime, with a finite but anomalously 
large zero-field diamagnetic susceptibility, takes place. However, since Ho is extremely small, in fact the 
condition H % Ha is not restrictive. 
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Certainly, the applicability of equation (27) requires that the angle  CY^ should not be too 
small. Outsidethisrange(ru < CY& therearetwosolutions/3 = PoandP = n - Po,where 

cos.& = Csin CY (29) 

corresponding to a finite angle between d and H. Degenerate states of the d-vector form 
two cones with the rotation axes along H and -H. Now the space of degeneracy is 

(ii) If C < 1, the equilibrium angle p between d and H is finite at any CY and is given 
by equation (29). 

Being restricted by the condition (17), we cannot use equation (29) to describe 
correctly the limit of CY+ 0. As in the OAF (Nersesyan and Vachnadze 1989), we expect 
discontinuities in the angle dependence of the ground state, and hence the anisotropy 
energy at small CY, occurring each time when the spin-up Zeeman sublevels of the n 
negative-energy Landau levels become empty, while the spin-down sublevels of the n 
positive-energy levels become filled. Note that, at sufficiently small 01, X y )  can no 
longer be treated as a perturbation, which makes the analysis very complicated. 
However, bearing in mind the results in section 3, it is qualitatively evident that, in this 
limit, the angle p between d andH tends to n / 2 .  

(where 
the diamagnetic part is given by equation (26))  of the system at zero temperature. The 
explicit form of xpara depends on the equilibrium orientation of the d-vector. If d is 
parallel to H (B = 0, n), 

S’ x z2. 

Let us now consider the equilibrium magnetic susceptibility x = Xdia + 

xPua = ( 2 N / n W )  pB(e/m*c)  sin CY (30) 

and the total susceptibility completely coincides with that in the OAF phase (Nersesyan 
and Vachnadze 1989). For not too small CY, the diamagnetic contribution is dominant: 

Ixdia I/Xpara - (m/m*)”2(AO/pBH)”2 L%’ 1. 

On decreasing CY, zpara decreases more slowly than lxdial; so, at CY - psH/Ao ,  the para- 
magnetic response can be dominant. If the equilibrium angle between dand H is either 
Po or x - Bo (see equation (29)) ,  

xpara = ( 8 N p $ / n z W )  ln(W/Ao) (1 + C2 sin2 CY) (31) 

where parameter Cis given by (27) .  This case is qualitatively similar to the previous one. 
The only difference is that the dominance of paramagnetism occurs at a relatively larger 
angle a: CY - (pBff/~0)’/3. 

At finite temperatures the above results are valid, until the temperature is much less 
than the Zeeman splitting of the n = 0 Landau level. However, if TB h, it can be easily 
verified that the second term (which is linear in Id/) in the anisotropy energy (27) will 
be changed by - ( N / 4 x W ) ( m / m * ) ( p B H / T ) p $  (d -H)* ,  which represents a small cor- 
rection to the first term in (27).  We thus conclude that, on increasing the temperature 
and reaching the range T > pBH,  the angle between dandlfcontinuously increases and 
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eventually becomes equal to n/2,  irrespective of the field’s orientation relative to the 
plane of the system. 

A A Nersesyan et a1 

5. Role of spin-orbit interaction 

In this section we consider the effect of weak spin-orbit interaction on the orientation 
of the d-vector. We use the following, purely two-dimensional form of single-particle 
spin-orbit interaction-presen,ing translational symmetry of the square lattice: 

where, because of the requirement of hermiticy, A(k) is a real vector function of k ,  
As already mentioned, we assume that the two-cosine tight-binding spectrum e(k) is 

orbitally non-degenerate. This corresponds to zero average value of electron’s orbital 
moment at each lattice site, in which case diagonal elements of the spin-orbit operator 
in the Wannier representation vanish because of time reversal invariance. This means 
that spin-orbit effects can only be revealed as a result of the particle intersite hopping 
on the square lattice. In  the simplest case such a situation corresponds to an s-wave 
band. It also appears to be the case in high-T, materials with Cu-0 layers. Owing to the 
crystal field and Jahn-Teller splitting of the originally degenerate 3d electron states on 
the Cu atoms, the highest-energy state that forms a two-dimensional half-filled band is 
well separated from other levels and has 3diz-y2 symmetry with quenched orbital 
moment ( ( I )  = 0). 

We thus find that the requirement of time reversal invariance implies that A( - k )  = 
-A&). h ( k )  must also transform as a pseudovector under the point group D, of the 
square lattice. For coinciding reference framesin real and spin spaces, the simplest form 
ofA(k)corresponding to the nearest-neighbour approximation forthe electron hopping, 
which has already been used for the original tight-binding spectrum, is 

A(k)  = ( A o / ~ ) [ e ,  sin(k,a) - ey sin(k,a)] (33) 
where A. is a real parameter: A. Q A,. 

E’(k) = 

In the presence of the spin-orbit interaction, the spectrum is given by 

+ A’@) + A2(k)  rt 2{[~’(k) + A2(k)]IA12(k) 

- A’(k)[d. A(k)I2}’p. (34) 
If d is perpendicular to the plane of the system ( d  = er) ,  a splitting of the spectrum (6) 
takes place, and a finite Fermi surface appears, with the density of states at zero energy 
proportional to A,,. If d lies in the plane of the system, the spin-orbit interaction keeps 
the Fermi surface zero dimensional, only splitting the zeros of the original spectrum (6). 
In full analogy with the case for a longitudinal magnetic field (see section 3), one thus 
concludes that the spin-orbit interaction lies in theplaneofthed-vector. Indeed, treating 
(32) as a perturbation with respect to the mean-field Hamiltonian (4), in the second 
order in A. we obtain the following spin-orbit part of the anisotropy energy: 

A; A’(k)[sin’(k,a) + sin2(k,a)] 
E m  

= -(d. 0,)’ 
8 k 

= Ns(d-ei)2[l W +O($)]. (35) 
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Possible anisotropy of the exchange interaction between electrons on neighbouring 
sites also affects the orientation of the d-vector. The corresponding contribution to the 
ground-state energy of the SN state is proportional to 

A’%& - Ny(Ao/W)Z(d .e , )Z  (36) 
where yisthe exchange anisotropy constant. Dependingon thesign of y and relationship 
between the parameters, equations (35) and (36) result either in an ‘easy-axis’ 
anisotropy, or in an ‘easy-plane’ anisotropy. The space of degeneracy of the d-vector is 
Z2 or S’, respectively. 

Let us consider now the combined effect of the spin-orbit interaction and the 
magnetic field. Clearly,,in the presence of the magnetic field parallel to the plane, the 
spin-orbit interaction results in the appearance of in-plane easy-axis anisotropy, which 
reduces the SO(2) degeneracy of the SN state down to Z 2 : d  = *(H X e,)/lHI. 

For a finite inclination of the field, the most interesting situation arises when the 
condition 

IQ,  11i2 %Ao B Ihl (37) 
is satisfied. Now we shall show that the splittingof the n = 0 Landau level, caused by the 
spin-orbit interaction, results in a contribution to ‘%an,s, which is linear in both H and A, 
and leads to a two-axis in-plane anisotropy. 

Thecontributionofthe‘higW-energyregion(Ao Q / E l  Q W)isstillgivenbyequation 
(35). Neglecting the Zeeman splitting of the single-particle levels and considering for 
simplicity the case of a perpendicular field, the low-energy (IEI Q Ao) one-dimensional 
Hamiltonians for the two groups of fermions will take the form 

X ,  = (qpX - & U ~ ) T ~  - (eH,c,.t/c)(d* . u)r, 
%e2 = (CIIP~ + AouJrx + (eH,c, j i /c)(d*.  @)Ty 

(38) 

(39) 
where d* is obtained from d by a x/4 rotation?: 

d* = ((d, + d , , ) / f i ,  (-dx + d y ) / f i ,  dz).  

The symmetry properties 

X - Y  y w  -x d, + -d, dy ---f dx 

V I +  rrwz v 2  --f 7, *I X1 ex2 (40) 
allow one to consider XI only. 

Let us characterize the orientation of vector d* in real space by the spherical angles 
@and q: d: = sin 8cos rp. d; = sin @sin q, d,* = cos 8. Making then a rotation of the 
spin space, 

Wl+ U-’v, U(@, q) = exp[(i/2).4(u, sin q - uy cos q)] 
to direct the transformed z axis along dc, after a proper rotation around 2 we obtain 

XI + [c@x +&(I - d,?)’”ux - Aod;i U&& - (eH,c,x/c)uzTy. 
Using now atransformation ql+ vvl with v = (I/VT)(I + iuyr,) results in 
XI = c ~ @ ~ T ,  - ( ~ ~ , c , x / c ) u , z ,  + &(l - d,?)’PUz + Aod,*O,. (41) 

The structure of the Hamiltonian (41) is identical with (19); therefore, according to 
t The transformation d -  d* should have been assumed in equation (7). However, it is unimportant in the 
absence of the spin-orbit interaction when there is no coupling between the real and spin spaces. 
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(25), its contribution to  the anisotropy energy equals v(H,) lAo 1(1 - d,;2)‘/z. Because 
of the symmetry property (40), the contribution of XZ differs from that in (40) only in 
that d;’ should be changed to d:’. Taking into account (35), for the anisotropy energy 
we obtain 

A A Nersesyan et al 

+ (1 - d:2)”2]}. 

From (42), one concludes that, under the condition (37), the minimum value of%.,is 
is achieved at df = 0, Id: I = Id; I = l / f i .  This corresponds to two-axis in-plane ani- 
sotropy which orients the d-vector along either of the crystallographic axes of the square 
lattice. The space of degeneracy is Z4. 

6. Conclusion 

In this paper, we have discussed the low-temperature magnetic properties of one of the 
possible states of ZD interacting Fermi system-the SN state. Using a simple mean-field 
description, we have shown that the most interesting effects arise in a magnetic field 
affecting the orbital motion of gapless fermionic excitations, whose existence is dictated 
by violation of the invariance with respect to n/2 rotations from the point group D4 in 
the SN phase. Among these effects are anomalous diamagnetism, similar to that in the 
OAF state, and the important contribution to the anisotropy energy which determines 
the space of degeneracy for the spin vector dof the order parameter. 

As we have seen, in different conditions, this space may be discrete (Z,, 2,) or 
continuous (S*, S’ and S’ X Z2). In the former case, an Ising-like symmetry will result 
in the existence of long-range order below some characteristic temperature even in a 
purely two-dimensional system. For a continuously degenerate SN state, a mean-field 
approach can only be applicable to estimate the crossover temperature below which the 
amplitude fluctuations of the local order parameter become small (Schulz 1989a). To 
describe the orientational dynamics of the d-vector at low temperatures (TQ AQ), one 
would have first to integrate off the fermionic degrees of freedom to obtain, in the 
continuum limit, the free-energy functional. It would be very interesting to perform this 
calculation taking into account the ‘relativistic’ Landau quantization of the low-energy 
states in the magnetic field. 

Various types of degeneracy space of the SN order parameter allow different topo- 
logically stable textures of the vector field d(x),  e.g. domain walls in the case of Z, 
symmetry, or XY-model-like vortices in the case of SO(2) symmetry. The electronic 
structure of topological defects in the ZD commensurate SN phase is now under study. 

In this paper. we have described the low-temperature magnetic properties of a 
commensurate SN phase. with a homogeneous orientation of the d-vector, for weakly 
interacting electrons with a simple, exactly half-filled energy band. There remains the 
questionof stability of suchaphase with respect topossiblechangesin theoriginalmodel 
that violate the perfect nesting property of the ZD Fermi surface. This occurs, for 
example, when one takes into account next-nearest-neighbour hopping of the particles, 
or when finite deviations from the band’s half-filling are considered. In the latter case, 
by analogy with ZD antiferromagnets, described by the weak-coupling Hubbard model 
(Schulz 1989b) one might imagine the development of an incommensurate SN phase via 
the formation of a domain wall structure of the d-vector under doping, with the added 



Low-T mugneticproperries of ~ D S N  stare 3365 

holes localized at the walls. However, the existence of the low-energy excitations in the 
SN phase can essentially change this picture, since the stability of such domain walls is 
not clear. We hope to investigate these questions in the future. 
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Appendix 

The extended 'U-V-J' Hubbard model is given by the Hamiltonian 

( n . 4  " ( n m )  (n.m) 
H =  -t E CL~C,, + U E n . t  n.1 + v E n.n, + J E s.. s, (AI) 

where the symbol (n, m) denotes nearest-neighbour sites, n, = C~~C,, and 
s. = I ~ ~ ~ , a , g c ~ ~ .  We shall be interested in the mean-field instabilities in this model at 
half-filling, assuming that U ,  V > 0 and thus excluding the superconducting instability 
from the consideration. The local operators whose expectation values determine the 
order parameters for the CDW, SDW, OAF and SN states, are given by 

O,,(n) = (-l)"=+%;mc,, 

Os,(n, n + g) = i(-l)"x+"yd(g)cLwd. ~ ~ ~ c . , . ~ , ~  

whereg=-ca,,-c~,d(+~,)=-~(ta~)=l,~d~~=1. 
Using the standard mean-field procedure for each order parameter independently, 

one obtains self-consistency equations for the corresponding amplitudes Ai (i = CDW, 
SDW, OAF, SN): 

Here Ti are linear combinations of the interaction constants 

rmw = sv - u rsDw = U -t 45 

rsN=4v-u roAF = 4v + 6J ('44) 
the function @(k) = 1 for CDW and SDW, and @(k)  = f (cos k, - cos kJZ for OAF 
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and SN; E,@) = [ ~ ' ( k )  + A.?(k)]ln, where A& = A i  for CDW and SDW, and Ai(k) = 
Ai(cos k, - cos ky) for O u a n d  SN. 

At Ti > 0, equations (A3) define the corresponding mean-field transition tem- 
perature which can be roughly estimated within log 'T accuracy, i.e. by taking into 
account only those states close to the Van Hove saddle points of the spectrum E@) ,  kA = 
(R /u ,  0) and kB = (0, n/a):  TCii = 8t exp[ - (8~~ t / r , ) ' ~ ] .  The dominating instability is 
determined by the largest positive Ti. 

In the absence of the exchange interaction, i.e. J = 0 (the 'U-V model), one has 

observing the CDW-to-SDW-phaSe transition on increasing U from the region U < 4V to 
the region U > 4V (see e.g., B a n g  and Callaway 1989). On the critical line U = 4V all 
Ti equal 4V, indicating degeneracy between the transition temperatures for the density 
waves and the current states. Certainly, the mean-field approximation is not adequate 
for singling out the dominant instability at U = 4V, since the interference between 
different competing instabilities is totally ignored in this scheme. However, as follows 
from (A4), the above degeneracy is removed by a weak exchange interaction, and for 
any sign of J the dominant instability turns out to be either of the OAF type (U = 4V, 
J > 0) or of the SN type ( U  = 4V, J < 0). We believe that the validity of this conclusion, 
which should also hold in some vicinity of the critical line U = 4V, goes beyond the 
mean-field approximation. 

A A Nersesyan et a/ 

r C D w  > r o A F  = rsN > r s D w  at U < 4v, a d  r $ D w  > r o u  = r S N  > r c D w  at U > 4v, thus 
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